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Behavior of a Quantum Particle in Contact 
with a Classical Heat Bath 
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We investigate the behavior of a two-level quantum system in contact with a 
classical heat bath, e.g., a solute particle with internal degrees of freedom immer- 
sed in a solvent of massive particles. Using a combination of analytical and 
numerical methods, we obtain precise information about localization, time-dis- 
placed correlation functions, and the frequency-dependent susceptibility of such 
solute particles. We find that these quantities can have a strong dependence on 
the density of the solvent fluid, with the maximum changes from the behavior 
of the corresponding isolated quantum system occurring in many cases at very 
low densities. We compare the exact results with those obtained by path integral 
Monte Carlo. There is good agreement with the imaginary time correlations, 
but analytic continuation to real time proves elusive: even with the best numeri- 
cal data on the former, we can only get very gross features of the latter. 

KEY WORDS: Quantum particle; classical bath; two-level approximation; 
real-time correlation functions; frequency shift; path integral Monte Carlo; 
analytic continuation. 

1. I N T R O D U C T I O N  

U n d e r s t a n d i n g  h o w  the  p rope r t i e s  of  an  i so la t ed  q u a n t u m  sys tem are  

m o d i f i e d  by i n t e r a c t i o n s  wi th  the  e n v i r o n m e n t  is a p r o b l e m  of  g rea t  

t h e o r e t i c a l  as well  as p r ac t i ca l  interest .  E x a m p l e s  inc lude  the  shifts a n d  

b r o a d e n i n g  of  the  ene rgy  levels  of  an  a t o m  or  m o l e c u l e  i m m e r s e d  in a f luid 

o r  p l a s m a  a n d  the  m o t i o n  of  an  e l ec t ron  in a l iquid.  (1 3~ T h e  s imples t  
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model of such effects occurs when the features of interest in the isolated 
system can be represented, at least approximately, by a two-level quantum 
system, e.g., the inversion transition in an NH3 (or similar) molecule (4) and 
the bistable Josephson tunnel junction. (5'6) Questions of interest for such 
systems are the effective tunneling rates, including possible localization in 
one of the two minima, energy absorption spectra, etc. 

In this paper we study such phenomena for the case of  a bistable 
quantum system interacting with a classical environment via short-range 
potentials. More specifically, we will think of our system as the limit of a 
model quantum particle in a double-well external potential immersed in a 
classical fluid. We assume for simplicity that the quantum particle moves 
only in one dimension, say along the x axis, while the fluid particles are in 
three dimensions. The appropriate model Hamiltonian is then 

H =  ~ P~ + ~z7-;..1 2 1 + -  ~ D ( q , - q f l + ~  U ( q - q f l  ( i .I)  V(q) + ' v  zM 2 i~ j j Zmo 

Here q = (q, 0, 0) is the position and p the momentum of the quantum par- 
ticle with mass m0, and V is the external double-well potential. {q j, pj} are 
the positions (in R 3) and momenta of the fluid molecules with mass M. 
These interact with each other via the potential D and with the quantum 
system via the potential U. The whole system is in thermal equilibrium at 
temperature T with fluid density p. 

We assume now that the thermal wavelength of the fluid particles is 
small and that the typical time scale of the quantum system is much faster 
than the time scale set by the motion of the fluid molecules. The fluid may 
then be treated classically. Both of these requirements will be satisfied when 
the mass of the fluid particles M becomes very large (see ref. 7 and referen- 
ces there for related models with both quantum and classical degrees of 
freedom). Thus, we model the bistable quantum system as immersed in a 
quasistatic, fluctuating medium. With these simplifications the relevant 
quantum part of the Hamiltonian becomes, in units in which h = 1, 

1 
H =  - - - - A  + V(q) + ~  U ( q - q j )  (1.2) 

2m0 j 

where the {q j} specify the fixed, time-independent, configuration of the 
classical particles. 

H is a one-particle Hamiltonian with a random potential: the surroun- 
ding fluid modifies the bistable potential in an irregular fashion. The 
assumption that the original system (1.1) is in thermal equilibrium implies 
that averages for this quantum system have to be taken according to the 
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annealed prescription. Thus, if A and B are observables, then their time- 
displaced equilibrium correlation is defined by 

(Tr[e-nHeitUBe-i'S4A]) 
<B(t)A)a= <Tr[e_nH] ) (1.3) 

where /7 is the reciprocal temperature and ( - )  denotes the (classical) 
thermal average over the coordinates of the fluid particles. This is defined 
by 

~A'" "~A dql'" "dqNf( ' )exp[--  �89 y~iNj= 1 U'(q~- qj)] 
(q,- (1.4) 

when there are N fluid particles in a region A. If the system is open or large 
compared to the range of V and U, then we can take ( . )  to be a grand- 
canonical average at the appropriate fugacity z. Note that if B = 1, then 
(1.3) defines the static equilibrium average of A. We can also rewrite (1.3) 
for any observable A in the form 

where 

( A ) a = f A ' " f A d q l ' " d q u ( A ) o t x ( q l  ..... qx)-- ((A)Q)~ (1.5) 

Tr[e nHA] 
(A)Q- -  Tr[e nu] (1.6) 

is the normalized quantum expectation value for a fixed configuration {qi} 
and the equilibrium average is modified to the new probability distribution 
/x given by 

/~(ql ..... qN) 

e x p [ -  �89 ZN~j= 1 U(qg-q j ) ]  Tr [exp( - f lH) ]  

= IA"" ~A dq~.., dqN exp[-- 1/3 52~s= ~ D(q,-- %)] Tr[exp(--/7H)] 

(1.7) 

We shall also consider averages in which the factors Tr(e -nil) are 
omitted from the above formula, so that/x oc exp[-�89 Y' ~'(q~-qj)],  as if 
the classical part of the system were not affected by the quantum part. 
Averages of this type will be called "quenched" averages; the ones with/x 
given by (1.7) will be called "annealed" averages. We may also take for # 
any other a priori distribution. We shall use the notation ((A)Q)~ for all 
such cases. 
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It is clear from (1.5) that if the quantum average ( A ) Q  can be done 
for arbitrary configurations {qi}, then the remaining average is purely 
classical and can be done by standard Monte Carlo techniques. When this 
is not possible we can still evaluate annealed expectation values of static or 
imaginary time correlations, replacing t by - i z  in (1.3), by a path integral 
Monte Carlo (PIMC); for quenched averages this is more difficult. Once 
the PIMC calculation has been done, it is then possible in principle to 
analytically continue these correlations to real time. (7) It was one of the 
motives of this work to see how well this continuation works in practice. 

The organization of the remainder of the paper is as follows. In the 
next section we approximate H in (1.2) by that of a two-level quantum 
system, corresponding to the two lowest levels in the bistable potential V. 
In Section 3 we present some exact results for the behavior of this two-level 
system in the thermal environment of a simplified model fluid. In Section 4 
we present results on the imaginary-time correlations for this system 
obtained via PIMC and discuss the difficulties encountered in trying to 
analytically continue them to real times. In the last section we discuss the 
general imaginary-time Feynman path formalism for systems described 
by (1.2). 

2. T H E  T W O - L E V E L  A P P R O X I M A T I O N  

As indicated in the Introduction, we are interested in potentials V 
which have two symmetric pronounced minima at q + and q .  Therefore at 
sufficiently low temperatures we can approximate our system (1.2) by a 
two-level system, corresponding to the symmetric and antisymmetric wave 
functions. (4'5) This system can now be represented by the usual spin-half 
Heisenberg Hamiltonian 

Hs = - �89189189 (2.1) 

where co o is the energy difference between the two levels for the isolated 
system, and az= _+1 corresponds to localization at q+. The potentials 

and 

N 

h ({q j} )=  ~ [U(q_-q j ) -U(q+-q j ) ]  (2.2a) 
j = l  

N 

Uo({qj} ) =  ~ [U(q_-qj)+U(q+--%)] (2.2b) 
j = l  

are produced by the fluid particles. Note that we have neglected here the 
effect of the bath on the tunneling frequency co o. As a consequence, the 
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interactions always increase the energy difference between the ground state 
and excited states 

e)o~ Eo2+h2]U2=-g2=(�89189163189189 (2.3) 

corresponding to a "blue shift" of the absorption frequency. An analysis 
using directly the solution of the continuum Schr6dinger equation for the 
Hamiltonian (1.2) which correctly treats this effect will be presented 
elsewhere. 

Using (2.1), it is easy to compute the quantum averages (A)Q defined 
in (1.6) for all quantities of interest. We find 

(o 'X)Q = (O)0/~r~)tanh(flf2/2) (2.4) 

( f f ) ' ) )Q = 0 (2.5) 

( a z ) Q = ( h/O ) tanh(fi~/2) (2.6) 

Let Ca(t  ) denote the quantum mechanical expectation value for the 
a~-time correlation functions, 

Tr[e ~H'e~'H.'a~e ~'H~a~] 
Ca(t  ) = (a"( t)o '")Q--  Wr[e ~/~'] (2.7) 

where c~ = x, y, z, with - oo < Re(t) < o% 0 ~< - I m( t )  < ft. Then, using the 
eigenfunctions 01,2 and eigenvalues 2~,2 of Hs and utilizing 

2 
<r e -'~mei'n'a~'e 'm'a~Oj ) 

j = l  
2 

=E 
j , k = l  

2 

= E  
j , k =  1 

we obtain for Ca(t  ) 

(r e ~I~'ei''-Isa'~e-i'u'~k ) ( ~  ]a~r 

cf~(O - 

c6( t )  = 

c b ( t  ) - 

(2 2 

cosh [ (g2/2)(fl- 2it)] 

cosh(flY2/2) 

h 2 + ~g C6U) 
~22 

(2.8) 

(2.9) 

(2.1o) 
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Equations (2.8)-(2.10) also yield the frequency-dependent suscep- 
tibilities as defined by linear response theory3 8) Thus, the yy susceptibility 
is given by 

2~Y(o))=f~d~C~(-i~)-iCOfodte io ' f~chC~(tTir  ) (2.11) 

The imaginary part of )~0Y(co) is given by 

z~y(o)) = - I m[~Y(co ) ]  = ~[6(co - f2) - 6(~o + g2)] tanh(flf2/2) (2.12) 

For  ~o = 0 we obtain ~Y(0 )=  2 tanh(flO/2)/O. 
We can interpret these susceptibilities as the line shapes which would 

be observed for an isolated system. To obtain the susceptibility for a dilute 
solution of such a two-level system in the fluid, we need to average them 
over some distribution of the fluid particles. 

Replacing H by Hs in (1.7), we obtain the distribution p (correspond- 
ing to annealed averages) 

e x p ( -  flHerf) 

#(q~ ..... qN) = IA " " " ~A dq~ " " dqN exp( -- flHe~) 
(2.13a) 

where 

Hefr= ~<j ~J(qi-qj) + �89 {qk } ) - ~  ln (c~ fl-~-~) (2.13b) 

In order to proceed further, we have to specify U and ~'. For the 
Monte Carlo calculations we choose for U the screened polarization 
potential 

e-Klql 
U(q) = W (q2 + ~2)2 (2.14a) 

with (for numerical convenience) W =  -5O)o, c~ = x/2, and ~c = 3, in units in 
which q_+ = _+1. For  the interaction between the fluid particles we choose 
a simple hard-core potential. The role of this potential is primarily to 
prevent excessive concentrations of fluid particles in the vicinity of the 
quantum particle (see Section 5). For  this reason we actually simplified the 
model further by replacing, in most computations, the continuum fluid by 
a hard-core lattice gas on a simple cubic lattice with lattice spacing b = 0.5 
and the particles occupying the centers of cubes with a priori probability p. 
For  the analytical calculations, which were carried out using a lattice gas 
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model with lattice spacing b=0.5 ,  we use, instead of the 
in (2.14a), 

U(q) = {OO if tql ~<0.5 
if Iql >0.5 

with U0 chosen so that (2.14a) and (2.14b) agree when Iql =0.5. 

potential 

(2.14b) 

3. R E S U L T S  O F  A N A L Y T I C  C A L C U L A T I O N S  

Before describing the results of our computations on the effects of the 
environment, we note that for the isolated system the equilibrium density 
matrix is diagonal in the o -x representation, so that (aZ)Q = 0  and 
(aX)Q = tanh(1/3COo). Similarly, with 

Ca( t )=  (C~(t)+C~(-t))J2 (c~ = x, y, x) 

denoting the symmetrized time correlation functions, Cx( t )=  1, while 
Cz(-ir) has a minimum at r = p / 2 ,  where its value is given by 
cosh(/~co0/4)/cosh(/?COo/2 ). The effect of the fluid is to "hybridize" these 
eigenstates, i.e., the new eigenstates will be a linear combination of the a x 
eigenstates, since the quantum system can lower its energy (for some con- 
figurations q) by being in an eigenstate of a ~. Thus, for /3 --, o% ( a ~ ) o  = 
h/f2 ~ ___1 for configurations in which Ihl >> c0o, i.e., ones in which there is 
a large difference in the potentials at q_+_. This would correspond to 
approximate localization of the particle in one of the potential minima at 
q_+. To obtain quantitative results about the degree of localization, energy 
shifts, etc., as a function of density and temperature, we have to carry out 
the classical average with # given by (2.13). This average can be done 
analytically when the fluid particles on different lattice sites do not interact 
and U is given by (2.14b). There are then eight sites around each of 
the minima at q+ and q , and ( . ) ,  involves weighted sums over 216 
configurations; due to symmetry, f2 can take only nine different values. The 
results obtained this way are very similar qualitatively to those obtained 
without truncation by Monte Carlo evaluation of ( . ) , .  

This can be seen in Figs. 1 3, where we show graphs of the C~(-i'c) 
versus r//~ for c~ = x, y, z at various lattice densities. 

In our calculation we set/~ = 16e) 01. A striking feature of these graphs 
is that the strongest hybridization, as measured by the rise in value 
C~(-i'r) at its minimum, when z=/3/2 [-remember that C z ( - i r ) =  1 when 
the system is dominated entirely by the interactions] occurs at very low 
densities: this value of Cz is plotted in Fig. 4. For  the nearest neighbor case 
we find that the maximum occurs at a lattice gas density/~(/~) given by 

fi(/~) = �89 + tanh(flUmin/4)] ~ �89 + sign(Umin)] (3.1) 

822/55/3-4-18 
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Cx(-i-r)  

1 

0.8 

0.6 

0.4- 

0.2 

~ W  = - 8 0  

~o = 16 p= 0 ......., 

" x - ' x~X~xxxxxxxxxxxxxzx~ .2~xxxxxx~x ' - xe~  
p = 0.9 

+ + + + + + + + +  
O 0 0 C O 0 0 0 0 0 0 # ~ 2 . D - O  

p = 0 . 1 ~  

I I I I 

0.0 0.2 0.4 0.6 0.8 T/~ 

Fig. 1. Imaginary-time correlation functions Cx(-ir). Comparison of the nearest neighbor 
summation (lines) with the Monte Carlo simulations. (O)  p ~ 0.02, ( A ) p ~ 0.1, ( + ) p = 0.5, 
( x )  p~0 .9 .  

f~W = - 8 0  

/~ co o = 16 

Fig. 2. 

0.6-  

0.4-  

O.2- 

0 
0.0 0.2 0.4 0.6 0.8 ~-/ 

Imaginary-time correlation functions Cy(-it). Monte Carlo simulations (symbols as 
in Fig. 1 ), solid line for p = 0. 
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Fig. 3. 

Cz(-iT) 
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p = 0.1 
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p = 0 .02  

+ + + + + + + + + + +  

p = 0 .5  
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p = 0.9 
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Imaginary-time correlation functins C~(-ir). Comparison of the nearest neighbor 
summation (lines) with the Monte Carlo simulations (symbols as in Fig. 1). 

cz(- i~/2)  3 w  = -80 
/3 ~o  = 16 

0.8 
0 o 0 
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0.4 

a v e r a g e  

0 

0.2 

a v e r a g e  

0 I / I I I I 

0.0 0.2 0.4 0.6 0.8 P 

Fig. 4. Value of the a: imaginary-time correlation functions at fl/2 as a function of the den- 
sity. Comparison of the nearest neighbor summation (lines) with Monte Carlo simulations 
(O).  We also put in there the same quantity for the nearest neighbor summation for a 
quenched distribution of fluid particles; see Eq. (1.7). 
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where Urnin is the value of the potential  u 0 when all the lattice sites near the 
quan tum particle are occupied, see Fig. 5. We also see from Eq. (2.10) that  

hmax/g2max ~ 0.839 (3.2) lim C z ( - i f l / 2 ) =  2 2 
p = 6 ( / 3 )  

where the max imum values of  h and 12 are computed  from (2.2a) and (2.3). 
The small value of/~ at large fl is somewhat  unexpected and is an effect of 
using the annealed average. For  quenched averages, where # would be just 
a p roduc t  measure over different lattice sites, with occupat ion probabil i ty 
p, the max imum would  be expected to occur at p = 1/2, where the fluctua- 
tions in the density are largest. A plot of Cz(- i f l /2)  for the quenched case 
with p = 1/2 is also shown in Fig. 4. Note  that  in this case 

lim Cz( - i f l / 2 )=  ( h 2 / t 2 2 ) ~ 0  (3.3) 
p = 1/2 

p = 1/2, where the average is now with respect to the quenched measure. 
There are thus considerable differences in the behavior  of  the quan tum 
system in an annealed and a quenched environment.  Similar differences 
should exist also in more  realistic situations and it would be interesting to 
find experimental examples of this phenomenon.  

In Figs. 6-8 we show the real-time correlat ion functions. Since they are 
obtained by averaging over a finite number  of values of (2, these functions 

Cz(-i /3/2)  

i 

0.8 ~ 

0.6 -~ 

0.4- 

0.2- 

~ W  = - 5 ~ % 

I I 1 I 

0.0 O~ 0.4 0.6 0.8 P 

Fig. 5. Value of the a z imaginary-time correlation functions at ill2 for different values of fl 
as a function of the density. Results of the nearest neighbor summation for various values of 
flco o = 4, 12, 20, 28, 36 from top to bottom at p = 0.6. 
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CxCt) 

l 

0.8 

0 . 6 -  

0 . 4 -  

0 . 2 -  

0 -  

-0 .2  - 

-o .4  - 

-0 .6  

p = 0 .9  

/~ co o = 16 
Ca) 

I [ I 

0.0 0.5 1.0 1.5 tC~oJ 

(a) 

Irr 

Cx(t)  

i 0 .8 -  

0 . 6 -  

0.4 ' 

0 . 9 -  

0 -  

- 0 . 2  - 

- 0 . 4  - 

- 0 . 6  
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I I i 

0.0 0.5 1,0 1.5 tC~o, 

(b) 

irr 

Fig. 6. The a x real-time correlation functions for various densities of the classical particles. 
(a) Nearest neighbor summation. ( b ) M o n t e  Carlo simulation (symbols as in Fig. 1, 
connected by lines for visual guidance), solid line for p = 0. 
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0.6 p=o.~ 
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/3 ~ o  = 16 

1.5 t ~  o, Irr 

( b )  

Fig. 7. The o -y real-time correlation functions for various densities of the classical particles. 
(a) Nearest neighbor summation.  ( b ) M o n t e  Carlo simulation (symbols as in Fig. 1, 
connected by lines for visual guidance), solid line for p = 0. 
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Fig. 8. The a '  real-time correlation functions for various densities of the classical particles. 
(a) Nearest neighbor summation. ( b ) M o n t e  Carlo simulation (symboLs as in Fig. 1, 
connected by lines for visual guidance), solid line for p = 0. 
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Fig. 9. Frequency-dependent susceptibility ~YY(03) for various densities of the classical 
particles. (a) Nearest neighbor summation, (b) Monte Carlo simulation (symbols as in Fig. 1, 
connected by lines for visual guidance). 
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are quasiperiodic for p 50. For times large compared to (j)~-i and small 
compared to the spacing between the inverse frequencies, however, they 
show rapidly damped oscillations. For p < 0.1 the mean value gz of the 
oscillations in Cz increases with the density, gx decreases to values near 0, 
and gy is always zero. 

'The reason for the apparent damping of the correlation functions is 
the interference between the different frequencies in (2. For low densities the 
frequencies are distributed near 0)o, with some spread to higher values. 
When the density is increased the average frequency c~ increases, in 
conformity with our discussion of Eq. (2.3). This can be seen in the 
frequency-dependent susceptibilities such as XYY(0)) defined in (2.12) and 
plotted in Fig. 9. As the Fourier transform of ZYY(co)/tanh([10)/2) gives the 
real-time correlation functions Cy(t), these new frequencies give directly the 
apparent damped oscillatory behavior of the real-time correlation 
functions. Parallel results can be obtained when the interaction strength is 
increased instead of the density. 

For larger densities (p > 0.1), this behavior reverses. The classical 
particles, in their tendency toward localizing around the position of one of 
the potential minima, fill all the sites there. This gives a less asymmetric 
potential, i.e., reduces h({qj}), for the quantum particle, making it more 
like a free particle with enhanced tunneling probability. The values of 
Cx(-i~/2) increase and the values of Cz(-i~/2) decrease with increasing 
densities, becoming equal at a density near p = 0.5. 

With increasing density gx increases, gz decreases, and the relaxation 
time gets larger. For densities near p = 0.9, the asymmetries in the poten- 
tials are nearly zero, and the oscillatory behavior of C~(t) is similar to that 
of the free system. 

We remark here that for the lattice gas fluid the measure # of (2.13) 
is invariant under p ~ 1 - p  and U--* -U,  so that for a repulsive inter- 
action (2.14), W--50) o, the maximum hybridization occurs at p close to 
unity. This can be understood by noting that at low densities the repulsive 
interactions keep the fluid particles away from the quantum system. 

We also carried out Monte Carlo calculations for the continuum fluid, 
taking for U a hard-core potential. Identifying the density p* = pb 3 with p 
gives results similar to those for the corresponding lattice system. The 
potential fluctuations h are, however, smaller for the hard-sphere fluid and 
thus the resulting localization is less pronounced. 

4. P A T H  I N T E G R A L  M O N T E  C A R L O  

The real-time correlations, Figs. 6-8, and the corresponding suscep- 
tibilities, plotted in Fig. 9, are the quantities one would normally like to 
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extract by analytic continuation from path integral Monte Carlo. The latter 
can be carried out for more realistic systems to yield the imaginary time 
correlations C~(-iz). We did PIMC also here by discretizing the path 
integral corresponding to (2.1) as in ref. 9. Then for a given configuration 
{q j} of the fluid the measure on the discrete path is given by the Ising 
Hamiltonian 

h L 1 1 

k = l  = i ~ j  
i , j = l  

U(qi -  q j) (4.1) 

where Sk= _+1, corresponding to eigenvalues of a z, and KL=(1/2fl) 
ln[tanh(fiCOo/2L)]. We consider now He1 as the energy for the "spin" 
degrees of freedom {Sk} and the classical degrees of freedom {q j} also 
contained in h and Uo. Annealed quantum averages are then the same as 
classical averages with respect to Hol. 

Imaginary-time correlations are obtained through the averages (9'1~ 

Cx = ~ exp[--2flKL(SkSk+l + Sk+oSk+a+l)] (4.2) 
k = l  

Lk= ( -  l+Sk+ 

(4.3) 

C~ = ~ SkSk+a (4.4) 
k = l  

with 0 = 1 ..... L. 
We compare the imaginary-time correlation functions obtained by the 

PIMC methods with those of Section 3, especially for the density of 0.5 and 
W =  5~o o. We choose L =  80, which corresponds to about 16 correlation 
lengths along the fl axis. An increase of L does not affect the results. A typi- 
cal run with 10 7 Monte Carlo time steps took about 3 h on a VAX8600. 
The a z correlation functions along the "polymer" follow very closely the 
results obtained by the methods of Section 3. However, the a x as well as 
the a y correlations, which are related to the second derivative of the a z 
correlations, fluctuate around the exact values (obtained via diagonaliza- 
tion) and do not show a nice behavior (see Fig, 10). 

To obtain the real-time correlations we continue the imaginary-time 
correlation functions to real time by the analytical continuation method of 
Berne et aL, (7) which utilizes Pad6 approximants. The results of this proce- 
dure depend sensitively on the quality of the imaginary-time results; small 
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Fig. 10. Imaginary-time correlation function. Comparison of the Monte Carlo simulations 
utilizing the diagonalization techniques (lines) with path integral Monte Carlo (points) 
simulations. 

deviations from the exact form in the latter can give a completely different 
real-time behavior. For  zero interaction we obtained the oscillations of 
Cz(t) and Cy(t) with the frequency COo. In general the imaginary-time 
correlation functions are so structureless, even for the case of nonzero 
interaction, that we were never able to obtain more than one frequency by 
the Pad6 approximation technique. This frequency is shifted to a value near 
the maximum of )~Y~(e)) obtained with the method of Section 2, but, as it 
is a single frequency, it gives only a very crude idea of what is really 
going on. 

5. E F F E C T I V E  P O T E N T I A L  

In this section we use the general imaginary-time formalism of quan- 
tum mechanics to obtain qualitative information about  the localization of 
our system. The P I M C  discussed in the last section is of course just a dis- 
cretization of the Feynman-Kac  formula. (11) This formula gives a measure 
over imaginary time paths in the interval 0 ~< r ~</~ from which expectation 
values of equilibrium quantities and imaginary-time correlations can be 
obtained directly. For  the Hamil tonian (1.2) this has the form 
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1 2 (A)o=(fDq(.)A(q)exp{--fl & [ ~ m o O ( r ) +  V(q(~))]} 

x(expl-f[dr~U(q(r)-qJ)]) ) 
1 2 x(f Dq,.)exp{-;o dr[-~rnoO(V ) + V(q('c))]} 

( I J: ] ) ) '  x exp - d r ~  U(q(z)-qj) (5.1) 
J 

where the sum is over all paths q(~) with q(0)= q(fl). The first factor in the 
path integral is the "free part." It takes into account only the external 
potential V. The second factor, which is an average over the classical 
distribution of the fluid particles, yields an effective quantum action which, 
on the level of imaginary-time correlations, represents the influence of the 
surrounding fluid. 

To obtain the two-level approximation used in Sections 2~4, we exploit 
the fact that our potentials V have two pronounced minima at q+ = +1 
related by reflection symmetry. A typical path therefore spends most of its 
"time" (at sufficiently low temperatures) at one or the other of the two 
minima. The path q(z) may therefore be approximated by a path a(r) 
taking only the two values _ 1 which jumps at random times between the 
minima. The rate of jumping is just the tunneling frequency % given in 
(2.1). Thus, according to the free path measure, the path a(r) has the 
following statistics: the times {~j} when a(~) changes sign have a random 
(Poisson) distribution with density COo, conditioned [because a(0)= a(fl)] 
so that the number of sign changes of a(r) is even. We denote this distribu- 
tion of paths by P~176 (see ref. 6). In our approximation the measure 
in (5.1) becomes 

1 (exp[-fod'C~U(q~(~)-qj)]) (5.2) -Z, e ' ~  " )) 

We have to understand now how the interaction with the fluid modifies the 
a priori statistics of paths given by P~~ )). From (5.2) we conclude that 
the classical average ( . )  depends on a(v) only through the "magnetiza- 
tion" per unit length, 

m =  dr ~r(r) (5.3) 
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Therefore, let us define the classical part of the action by 

( [ ; :  1) S~(m) = - I n  exp - dz ~ U(q~(~)-qj) 
J 

=-lntexpI-~(uo-mh)] ) (5.4) 

with h and u o as in (2.2). Sc can be thought of as a mean field interaction 
for the Ising model. Unlike the standard example of a mean field interac- 
tion -Jm 2, So(m) is in general not quadratic. It is, however, concave (bent 
downward), with the second derivative at m = 0  given by - ( ( f lh /2)2) .  It 
is also symmetric around m = 0 as a consequence of the symmetry of the 
distribution of h, since U(q) is even. 

The distribution of the magnetization m according to (5.2) is given by 

1 
_ _  d-Sq(m) Sdm) (5 .5 )  

ZI 

where 

1 f :  dr a(z))  (5.6) e-Xq(m) = f p~ )) b (rn--~ 

S q ( m )  is essentially the Helmholtz free energy of the (continuum) Ising 
system as a function of the magnetization. Taking the Laplace transform of 
(5.6) yields 

f dm -Sq(m)e  . . . .  = 2  cosh + )2  (5.7) 
--1 

(5.7) cannot be inverted explicitly. For large fl we can use the method of 
steepest descent and obtain 

S q ( m )  ~ - -  �89 - m 2 )  1/2 (5 .8 )  

Thus, we may understand the statistics of the paths as a competition 
between random flipping (~Sq)  which wants to keep r n = 0  and the 
classical action So, which prefers m = _+ 1. 

There are two cases where the classical action can be calculated 
without effort. The virtue of these examples is to demonstrate again that 
localization is due to large potential fluctuations. 
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(i) There is no interaction between the fluid particles, U-=0. The 
classical particles are then distributed as an ideal gas with density p. This 
yields a simple exponential for the average in (5.4),/12) giving 

Using the general properties of So, it suffices to look at 

1 1 Sc(O)-~ Sc(1)-~ Sc(-1) 

=P-fdq{exp[-flU(q+-q)l-expI-flU(q2 - q ) ] }  2(5"10) 

Therefore, if U >~ 0, Sc ~ 0 exponentially as fl ~ ~ .  On the other hand, if 
the minimum of U is negative, then the difference (5.10) increases exponen- 
tially and the quantum particle localizes at q_+ as fi ~ 0o. 

The physical mechanism is best understood through the distribution of 
classical particles. If U~> 0, then typically the classical particles are pushed 
away from the quantum particle and in the limit fl ~ ~ no effect of the 
interaction with the fluid remains. If, on the other hand, U has an attrac- 
tive part, then since we have assumed that there is no hard core, particles 
pile up at the minimum of U ( q - q  + ). This is associated with large fluctua- 
tions which make the potential seen by the quantum particle typically very 
asymmetric--hence it effectively localizes. (4 6) 

(ii) As in our numerical simulation, we assume that the classical par- 
ticles are located at the sites of a simple cubic lattice with lattice constant 
b with at most one particle per site. We assume that there is no other inter- 
action between the classical particles, so that a site is independently 
occupied with probability p, 0 ~< p <~ 1. For this hard-core lattice gas the 
classical part of the action becomes 

S ~ ( m ) = -  ~ {ln[(1--p)eF(;)+pe-F~J)]--F(j)} (5.11) 
j ~  (bZ) 3 

where 

F(j)=-~ [U(q_ -j)+ U(q+ -j)-m[U(q_ - j ) -  U(q+ - j ) ] ]  (5.12) 

Let us again consider the limit of large ft. If U~< 0 (or, by symmetry, 
if U ~> 0), then the situation is just as before; for fixed p, particles are either 
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pulled in and occupy all available lattice sites close to the quantum particle 
or are pushed away and one is back to free tunneling; compare with the 
effect of fluctuations displayed in Fig. 5. To maintain potential fluctuations, 
we have to let p ~ 0 simultaneously with /3 ~ or. Another way to ensure 
potential fluctuations is to make U repulsive at short distances and 
attractive at large distances. To see this, we take the large-/3 limit in (5.11 ). 
Sc(m) converges then to 

flS(m) = 2 ~ F(j) O(Fj) (5.13) 
J 

plus a constant independent of m with O(F)= 1 if F~<0 and O(F)=0 if 
F >  0. If either U~> 0 or U~< 0, then S(m) = const. However, if U has both 
signs, because of "screening" one can achieve that S(0)> S(l). By (5.8) for 
large/3 the full action is given by 

Sq(m) + So(m) ~- ~E -t-~ - m 2 )  1/2 + S(m)] (5.14) 

which for an appropriate choice of the parameters in the potential has its 
minimum at _+ rh r  0. Hence, the quantum particle localizes fully in one of 
the minima as/~ ~ or. 

6. CONCLUDING R E M A R K S  

We studied the behavior of a two-level quantum particle in equi- 
librium with a classical heat bath. This model for a quantum particle in a 
double-well potential interacting with classical particles allows the study of 
correlation functions in real and imaginary time as well as the frequency- 
dependent susceptibility when the density of the classical system is varied. 
The main advantage of the two-level approximation is that the quantum 
mechanical expectation values can be obtained exactly for arbitrary 
classical configurations. The remaining average over the classical distri- 
bution can then be performed by the methods of classical statistical 
mechanics--by exact analytic calculation in a few simple cases, otherwise 
by Monte Carlo methods. 

Using analytic methods for a simple model where the classical 
particles were confined to a lattice, we obtained increasing damping and 
frequency shifts in the time correlation functions of the quantum system 
with increasing densities up to a density near 0.1. At higher densities the 
classical particles occupy all the places around the possible quantum 
positions; the resulting potential is then essentially independent of the state 
of the quantum particle and thus the tendency to localize gets smaller, and 
so do the damping and frequency shifts. 
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In addition to this semianalytical evaluation of relevant observables, 
we compared the imaginary-time correlation functions with the corre- 
sponding correlations obtained by path integral Monte Carlo simulations. 
The purpose of this was to see if the PIMC imaginary-time correlation 
functions can be found accurate enough to allow for the continuation of 
these functions to real time. The answer turned out to be that we could get 
only restricted real-time information from PIMC. The very small noise in 
the PIMC imaginary-time results caused such a loss of information about 
the dynamical behavior of the quantum particle that only one frequency 
could be found with the usual Pad6 approximation technique. This 
frequency, however, is in fact near the maximum for the susceptibility and 
so gives the correct average behavior of the system. 

The results show the convenience of the two-level approximation for 
the study of time-dependent phenomena in a quantum system interacting 
with a classical environment. A more sophisticated treatment of this 
problem involving the solution of the Schr6dinger equation f o r  the 
Hamiltonian (1.2) to obtain the two lowest eigenfunctions is in progress. 
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